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ABSTRACT: In the scenario of a natural catastrophe or a terrorist attack, a large number of self-organizing,
low-cost sensor devices can be deployed over the affected area. Each device equipped with its own power
source, sensor, processing unit and low-power radio, can be imbued with the intelligence to seek out its
neighbours and join in a wireless network spanning the geographic domain. The sensed quantities can
then be forwarded to collections points, where the information is aggregated and presented to emergency
response teams. We are developing a high-performance framework for the large-scale simulation of wireless
ad-hoc networks (SWAN). Our framework is comprised of inter-operating sub-models for terrain, dispersion
of hazardous substance, radio propagation, and the actual source code of ad-hoc networking protocols. In
this paper, we describe the architecture of this framework and present experiments that confirm its usefulness

in the study of routing algorithms.

1. Introduction

Current accelerated developments in signal process-
ing and computer technology will soon allow large-
scale sensor networks to become viable and valuable
in a wide variety of applications. Advances in micro-
electronics have lowered the cost of building blocks
that can be put together to construct a new gen-
eration of sensors. These sensors can contain com-
ponents for measurement, data acquisition and pro-
cessing, and radio communication. Their small size
and low per-unit cost will allow large collections of
these sensors to be deployed over a geographic area,
where they cooperate in gathering detailed informa-
tion about variables of interest.

The term “smart dust” has been coined to describe
the smallest of these kinds of sensors built with micro
electrical-mechanical systems (MEMS) [3,12,13,16].
The intelligence imbued in these small devices comes
from their ability to self-organize. Sensors can in-
teract with each other and construct, at deploy-
ment time, a wireless ad-hoc communication network

which has the capacity to determine, on its own, how
to route sensed data to randomly placed, and per-
haps even mobile, points of collection.

While much of the research in this area is currently
focused on miniaturization, manufacturing and de-
ployment of sensors, a sizeable portion of effort is
being applied to software development for these tiny,
embedded computers. The requirements of the code
that executes in this kind of platform pose great re-
strictions on the programmers, who are faced with
multiple limitations in terms of memory space, power
consumption and scalability of communication algo-
rithms. These restrictions make code development
for sensors a very complex task. Testing and evalu-
ating the software constructed for these platforms is
further complicated for two main factors: first, ex-
periment conditions are neither repeatable nor con-
trollable, and second, the number of nodes in the
network is potentially very large. For these reasons,
experiments with real sensor networks must be made
with a number of nodes that allows them to be man-
ageable, which is typically ten or less [6].



The obvious engineering aid to use in these cir-
cumstances is computer simulation. Accurate, com-
prehensive simulation models for wireless networks,
however, can be extremely computation intensive
and most efforts in this area have focused on rela-
tively small networks of a few tens of nodes [11,14].
The question that naturally arises is whether the per-
formance of the designs evaluated by these modest
simulations will scale up with the size of the net-
works.

Considering that sensor networks aim at reaching
tens of thousands of nodes, it is a problem of vast
proportions to simulate realistic scenarios in which
the network model inter-operates with intensive field
simulation models. In this light, a high-performance
computing approach becomes essential to the viabil-
ity of these simulations.

In this paper, we report the development of our
Simulator for Wireless Ad-hoc Networks, or sim-
ply, SWAN. This project represents the coming to-
gether of Dartmouth’s expertise in constructing a
high-performance, scalable simulator, and BBN’s ex-
perience with routing software for wireless ad-hoc
networks.

SWAN is more than the sum of its parts. Dart-
mouth’s DaSSF [15] has first been released in the
Fall of 1998 and has confirmed its promise time and
again in the simulation of communication networks
[7,8]. DaSSF’s lean interface (see [9]) is, perhaps,
as noteworthy as the performance it delivers because
it allows for extreme ease of inter-operability. Sim-
ulation models for DaSSF can be constructed in a
structured way, reused and extended. This feature
was key in the execution of our project.

BBN’s portable WiroKit router for ad-hoc networks
is another good example of inter-operability. By
virtue of its design, WiroKit has few and well-defined
points of contact with the environment on which it
executes. It was created to be portable not only
across different wireless platforms, but also easy to
transport into simulation testbeds. By enabling di-
rect execution at source code level, WiroKit’s relia-
bility as a final product is increased, since what is
verified and validated by simulation is ready to exe-
cute on target platforms without modification.

The motivation for the development of SWAN came
from the context of research carried out at the Insti-
tute for Security Technology Studies (ISTS) at Dart-
mouth College [1]. Among other possible applica-
tions for wireless sensor networks, we are particularly
interested in the potential this incipient technology
offers in areas such as surveillance, law enforcement,
and emergency response. Wireless sensor networks
enable the real-time, remote monitoring of threaten-
ing scenarios, what minimizes the risk to the lives of
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Fig. 1. Chemical Emergency Scenario

those involved in assessing or dealing with a situa-
tion.

In this first stage of SWAN’s development, we have
built a simulation model to study the viability of
wireless sensor networks as tools to aid the emer-
gency response to chemical or biological threats.
Next, we describe the concrete scenario that gave
shape to our simulation framework.

Suppose a deadly chemical agent is released in a
metropolitan area and its plume is carried over the
city propelled by wind currents as depicted in Fig-
ure 1. The first-responders are faced with the criti-
cally important problem of determining how the level
of chemical contamination across the affected area
evolves in time. This knowledge is crucial to opera-
tions such as the evacuation of the populace and the
coordination of a response force. A large number of
self-organizing sensors can be carried by helicopter,
for instance, and scattered over the affect area in
the first phase of emergency response. When the
network comes alive, each Smart Sensor (or node)
periodically uses its measuring device to assess the
level of contamination and beams the relevant data
to its nearest neighbours using a low-power, short-
range radio. The network then propagates this in-
formation to one or more Monitor nodes using paths
determined by an autonomous routing protocol. The
collected data can then be aggregated, processed and
used to display the evolution of the chemical plume
using real-time measurements.

Having concluded the first stage of our research
program, this paper describes the current state of
our project and reports interesting first results. At
present, we are able to run simulations of wireless
sensor networks with tens of thousands of nodes. To
the best of our knowledge, up to now, the only ex-
periments with networks of comparable dimensions
(10,000 nodes) was developed at UCLA by the Glo-



MoSim group [4,19].

The remainder of this paper is structured as follows.
In Section 2, we present the Scalable Simulation
Framework (SSF), the structural glue that allowed
us to describe and construct loosely coupled mod-
els that inter-operate to achieve a full-fledged sys-
tem simulation. In the same section, we also briefly
present the Dartmouth Scalable Simulation Frame-
work (DaSSF), a high-performance, multi-purpose
and multi-platform simulator that complies with SSF
specifications. Next, in Section 3, we present BBN’s
portable WiroKit router, which implements the sen-
sor network routing protocol in our simulations. Sec-
tion 4 presents the architecture of our simulator
showing how its basic components were put together
and how they inter-operate. In Section 5, we go on
to briefly discuss a novel RF channel model that al-
lowed us a good measure of computational simplicity
while maintaining good level of detail in our wireless
simulations. Only the basic principles of this RF
channel model are presented here, since a thorough
exposition is outside the scope of this paper. In Sec-
tion 6, we describe our simulation model and show
the results of the first experiments performed with
our framework. The empirical data obtained shows
our results for networks of up to 10,000 nodes and
indicates that our simulator supports models scaled
up by another order of magnitude. Finally, Section 7
offers our concluding remarks and also outlines on-
going and future research directions in our project.

2. DaSSF: Dartmouth Scalable Simu-
lation Framework

The S3 consortium has developed the Scalable Sim-
ulation Framework (SSF), a lean and simple inter-
face for the construction of simulation models. SSF
provides the modeler with the power to express the
inter-relationships of model components in a system-
atic and structured fashion (we refer the reader to
[2,9] for details).

The simulation worldview imposed by the SSF API
is process-oriented, isolating the modeler from the
intricacies of managing event-lists and of explicitly
dealing with the advancement of time. From a
programming paradigm perspective, SSF is object-
oriented and its API defines five base classes: entity,
process, outChannel, inChannel, and event.

An entity object is a container for state variables and
a process, which describes how the state changes in
response to interactions with other entities and/or
to the passage of time. Fach entity has a tem-
poral “alignment”, which in synchronization speak,
situates it in a logical timeline. Entities that are
coaligned are able to inspect each other’s state vari-

ables. Temporal alignment serves to give the frame-
work clues for concurrent scheduling in such a way
as to maintain causal consistency, making sure that
the future state of an entity doesn’t affect the past
of another.

The exchange of data between entities is achieved
through a channel, which denotes a unidirectional
flow of events between two entities. In reality, chan-
nel is a concept that is implemented by the defini-
tion and mapping of two classes of objects: inChan-
nel and outChannel. For communication to occur
between two entities, the outChannel of one must
be mapped to the inChannel of another. When an
outChannel is constructed, it is associated with a
minimum delay value and subsequent write opera-
tions may specify further delays individually.

An SSF model is able to express how each sub-model
communicates with others, clearly stipulating how
data is exchanged, but more importantly, exposing
the temporal coupling of its subcomponents. Since
the model is described as a graph, where nodes are
entities (possible containing processes) and edges are
channels with well defined minimum delays, one can
easily execute it using conservative parallel simula-
tion techniques. This characteristic is key to the scal-
ability of the simulation, since parallel execution in-
creases the offer of memory space and computational
power.

The definition of this powerful, although simple API,
has made a contribution to the simulation commu-
nity in two different ways. First, it has lead to the
creation of a family of compliant simulators for differ-
ent programming languages and different computing
platforms. Since SFF was designed so that the API
could easily be translated to different programming
languages, bindings have been produced for C+-+
and Java. With little or no modification, an SSF
model written in one specific language can be ported
to any SSF compliant simulator for that same lan-
guage, independently of the nature of the computing
platform (serial or parallel).

Second, and perhaps most importantly, the struc-
tured approach imposed by the SSF API has al-
lowed simulation programmers to make extensive use
of design patterns, what stimulated the creation of
databases of models. Experience has shown that
this was an important factor to the development of
communication network models of a scale previously
unseen [7,8]. Furthermore, access to comprehensive
databases of verified and validated model compo-
nents reduces development time for new experiments,
at the same time as increasing reliability of the fin-
ished product. Once a model component has gone
through the extensive testing that warrants its place-
ment in a database, it can be safely used as the cor-



nerstone for a construction of larger proportions.

The Dartmouth Scalable Simulation Framework
(DaSSF) [15] is the implementation of a simula-
tion run-time system compliant with the SSF APIL
From its inception, DaSSF was designed with high-
performance as a primary goal and, for this reason,
is geared towards parallel platforms. It is still able,
however, to run in single processor machines. DaSSF
is highly portable and successfully runs on a variety
of UNIX platforms, both in shared-memory architec-
tures that follow the SMP model and on distributed
clusters of workstations with MPI. The system is
publicly available under the provisions of the GPL at
http://www.cs.dartmouth.edu/research/DaSSF/.

Throughout extensive experiments DaSSF has
demonstrated high-performance in multiprotocol In-
ternet models with tens of thousands of complex net-
work entities reaching a rate of one million network
events per second [8]. Other experiments have shown
that DaSSF can simulate three million simple net-
work entities. In this case, it was observed that its
processing rates scale linearly with the number of
processors and remain constant with increasing prob-
lem size. DaSSF has achieved its goals through a se-
ries of techniques that minimize memory utilization
and scheduling cost; further details can be found in
[15].

The exorbitant costs associated with the simulation
of wireless ad-hoc networks call for an underlying
framework capable of delivering much computational
power. Our experience with DaSSF indicates it as
the natural candidate for this job. This choice was
motivated not only by the complexity and the size of
our problem of interest, but also by the ease of use as-
sociated with the SSF API. This simplicity has been
key in the rapid development of our models, but most
importantly, in the integration of components such
as BBN’s portable WiroKit router and a chemical
plume dispersion model.

3. BBN’s WiroKit Router

WiroKit, developed by BBN Technologies, is a highly
portable router for wireless ad-hoc networks. It is
explicitly designed to run without modification in
simulators or in real hardware platforms. That is,
precisely the same interface definitions are used for
the code that runs on a simulator and the code that
runs inside a mobile radio unit. The design followed
an object-oriented approach and, in fact, WiroKit is
completely contained in a single object. This feature
is essential for simulation environments, for it allows
multiple copies of WiroKit to execute in a single ad-
dress space.

The platform requirements to run WiroKit are min-

imal. It implements the full software code base for
routing protocols, forwarding engine, thread schedul-
ing, and queue and memory management. There is
virtually no need for an operating system. The only
demands placed on the computing platform are that
WiroKit be given a portion of memory at start-up
time, access to a real-time clock and a minimum
amount of the total CPU cycles for the execution
of its main thread.

The WiroKit router object receives packets from
higher protocol layers, which it uses to build frames
that are passed down to the radio modem. Con-
versely, it receives frames from the radio modem,
which are stripped down into packets which are
passed up to higher protocol layers. Within WiroKit,
any routing protocol can be specified, as long as
the same application programming interface (API) is
maintained. This flexibility allowed us to equip our
router objects with algorithms specific to our appli-
cation, that is, wireless sensor networks.

Sensor networks are an area of active current re-
search; see, for instance, [5,6,10,11,12,13,14]. In our
research, we intend to tackle two key issues per-
taining to this topic: routing protocols specific to
this type of application, and also efficient datagram-
forwarding mechanisms. Since these are both com-
plex in their own right, and tangential to this paper,
we will only briefly discuss them here. As our re-
search progresses, however, these will be main points
of interest to us.

Routing Protocols distribute information about
“what is where” throughout the sensor network, and
hence enable the sensor nodes to forward messages
(datagrams) from one hop to another towards their
intended destinations. Most routing protocols scale
poorly with the number of network nodes. It is not
uncommon for a protocol’s expense to grow with the
square (or worse) of the number of network nodes.
This expense can be in terms of over-the-air control
traffic, node memory, or node CPU requirements.
This obviously poses enormous problems for simula-
tions, which, in turn, emulate the actions of IV nodes.
The resulting simulation, thus, often scales as N3 at
best, and often as N*.

For our first experiments with sensor network rout-
ing, we have designed and implemented a simple tier
routing protocol that diffuses information about the
distance to the data sinks (monitor points) in the
network. Such protocols were employed in very early
packet radio experiments, as well as in contemporary
research, and provide a very simple and relatively ef-
fective means of disseminating information about the
locations of the monitor points. Note that they do
not, however, disseminate information about how to
reach any of the other nodes in the network, that is,



the sensor nodes, and thus cannot provide two-way
connectivity between monitors and sensors.

Datagram-forwarding mechanisms are responsible
for actually moving messages, hop by hop, along the
path from the source to the destination. This is ac-
complished thanks to the “what is where” informa-
tion disseminated by the routing protocols. There
are many important efficiency issues in these mech-
anisms. For instance, aggregating multiple messages
into a single radio frame greatly increases channel ef-
ficiency and reduces power consumption, scheduling
when radio receivers can be put into “sleep mode”
extends battery life, and so forth. A key portion of
our research will thus involve the quantitative ex-
ploration of various forwarding mechanisms given a
range of scenarios and assumptions.

Initially, our forward mechanisms employ all the op-
timizations that have previously been developed for
the portable BBN WiroKit software base. In prac-
tice, the most important of these is the “shortest
path” forwarding algorithm that directs a message
from source to sink in the minimal number of ra-
dio transmissions. WiroKit also aggregates multiple
messages into a single radio frame, which is also an
important optimization. The results obtained with
our experiments thus reflect the operation of sim-
ple “tier routing” with shortest-path forwarding and
frame aggregation.

In the next session, we present a broad view of
the organization of our simulation framework, where
we demonstrate how DaSSF integrates WiroKit and
other sub-models to create an environment for the
simulation of wireless ad-hoc networks.

4. The Architecture of SWAN

SWAN was born from the integration of two ma-
jor pieces of software DaSSF and BBN’s WiroKit.
Since both DaSSF and WiroKit were designed hav-
ing ease of inter-operability as a primary goal from
the start, these two pieces came together rather eas-
ily.  While WiroKit provided the functionality for
routing in wireless ad-hoc network models, DaSSF
brought forward the structural cement that served
to bind sub-models to one another.

Figure 2 presents the main components of SWAN
and shows the flow of data between them. From
a broad perspective, our simulator is composed by
four major kinds of sub-models: a Terrain Model, a
Plume Dispersion Model, an RF Channel Model and
a Node Model. Next, we describe in detail what they
do and how they inter-operate.

The Terrain Model is a static map that serves as the
unifying point between the Plume Dispersion Model
and the RF Channel Model. Since the evolution of

both models can be subject to the geography of the
terrain, for the sake of consistency, they must both
be driven by the same description. This way, the
same obstacle that stands in the path of radio waves
will be present in the path of the chemical plume. In
the current implementation of SWAN, we use flat ter-
rain, so both plume and radio signals can propagate
freely over the simulated space. The Terrain Model
remains, however, as a placeholder that will be im-
portant for the future development of the framework.

The movement of air masses, which affect the evo-
lution of the chemical plume with time, is described
by the Plume Dispersion Model. Since this model
is fairly isolated from the rest of the simulator, it
can contain either the simplest or the most compli-
cated descriptions of behavior. Due to the fact that
it is only subject to interactions with a static terrain
map, its states could actually be precomputed inde-
pendently of the simulation of the sensor network.

The Plume Dispersion Model provides the input that
drives the wireless sensors. Considering that we have
used flat terrain, this model evolves independently of
any other component in the framework, that is, it is
driven by time alone. We have divided the terrain
into square cells of side d and represented the state
of each one by the level of chemical contaminant.
For each cell, we compute the new contaminant level
(after a fixed quantum of time elapses) by averaging
the cell’s own level and the level of its neighbours.
We realize that this model alone can be extremely
complex and computationally intensive. The point
to keep in mind, however, is that, for our purposes,
its presence in the framework is justified by a need
to provide a “realistic enough” stimulus to the sen-
sor network. The precise evolution of the plume is
not, in itself, one of our goals. As SWAN evolves, it
may be interesting to instrument it so that network
design can be automatically validated by comparing
the evolution of the plume model against that of the
“sensed” plume.

To create a Node Model to represent the smart sen-
sors, we surrounded WiroKit with sub-models that
represent entities that exist within the physical smart
sensor devices. In this fashion, we have emulated
the environment that WiroKit requires to run. As a
router, WiroKit receives data packets from the Wire-
less Sensor Model, determines where they must be
sent in order to eventually reach a Monitor node,
and builds radio packets containing the routing in-
formation. The radio packets are, finally, passed to
a radio modem which takes care of translating them
into electromagnetic signals. In our model, we have
done away with the modem, since, for our purposes,
we don’t need to reach down to that level of detail.
This way, the output of WiroKit goes straight into
our RF Channel Model. Conversely, WiroKit may
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Fig. 2. Conceptual decomposition the SWAN framework

receive input from the RF Channel Model: when
packets traverse multiple hops to reach a Monitor,
intermediate nodes will receive them, and then send
them out in the appropriate direction.

Also inside each node, it would be necessary to spec-
ify an Operating System Model. This component
would emulate the functions of its counterpart found
in smart sensors and, thus, deal with issues such as
time keeping, thread management, and memory allo-
cation. As it happens, the DaSSF runtime environ-
ment already provides these functions to the models
that execute on it. Therefore, we didn’t need to cre-
ate an actual OS Model. When WiroKit needs to
obtain the current time or allocate memory, DaSSF
is called directly playing the role of the operating
system. Also, when a WiroKit object is created in a
DaSSF simulation, it passes the pointer to its main
thread to the runtime environment. DaSSF will in-
voke the WiroKit thread as often as determined by
the modeler.

The RF channel model is a more complex and sensi-
tive issue, since it bears so much direct influence on
the results of the simulation of the network. Since
the quality and the complexity of this model are key
to determining the viability of the entire simulation,
we discuss it alone in the next section. We now pro-
ceed to describe the model for network nodes.

In order to allow flexibility in the design of mod-
els for wireless network simulations, we have decom-
posed the node model into smaller pieces. Our goal
is to eventually achieve for wireless networks what
SSFNet has built for the simulation of wired net-
works: a library of different components that can
be pieced together to easily construct custom net-
work nodes [2]. Presently, we have determined the

ensemble of objects that form each node in a sensor
network: GPS, Sensor or Monitor, IP, Router, MAC,
and PHY.

All these individual components are bound together
by the syntactic glue provided by DaSSF. From these
smaller objects and entities, we construct the model
for network nodes and monitor. Figure 3 shows how
these components interact to emulate the behavior
of the real network components. This picture also
serves to outline the interaction of network compo-
nents with each other in the routing of messages and
also with the plume model and the RF channel.

GPS (Global Position System) provides current time
and location information. Asin the real GPS system,
this information is globally synchronized across all
nodes.

Sensor provides the active element that measures the
current local level of chemical activity. It also com-
poses and transmits messages (datagrams) indicat-
ing the node identifier, GPS location and time, and
current sensor reading.

Monitor is the data “sink”, or collection point, for
messages from the sensors. It creates logs with the
messages received, associating with each one a GPS
timestamp that indicates when it was received. An-
alyzing the evolution of the simulation, we can com-
pare messages as sent by the sensor against messages
as received at the monitor. In this fashion, we can
determine how many messages were lost, compute
statistics of transit delay, among other possibilities.

IP simulates the Internet Protocol layer in a host
computer. It provides IP datagram headers for each
sensor message. The importance of this component
lies in its relevance to the extensibility of the frame-
work: in the future, the wireless network model can
be made to inter-operate with a model for wired net-
works. Note that our present simulation does not
employ TCP or UDP; instead it transmits messages
over bare IP datagrams.

Router is the ad-hoc wireless routing engine together
with its associated forwarding engine. This is exactly
the BBN-supplied WiroKit code, which is an actual
router (see Section 3). As we’ve pointed out before,
this contains code that is identical to what runs on
real hardware, that is, on sensor nodes.

MAC simulates the Medium Access Control layer
of the network protocol stack, i.e., the unique link-
layer protocols that arbitrate multi-node access to a
shared RF channel. At present, this is a null object,
a place holder, soon to be occupied by the implemen-
tation of the IEEE 802.11 protocol, in the next stage
of our research program. Note that all channel-access
issues are simulated in the RF channel (see Section 5
ahead).
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PHY simulates the Physical layer of the network pro-
tocol stack, that is, channel encoding, modulation,
the effects of interference, and so forth. At present
this is a null object and, again, all related issues are
simulated in the RF channel. A detailed version of
this object is another goal in the next step of our
research program.

In the next section, we briefly describe our novel RF
channel model, which was constructed to embody, at
the same time, the characteristics of radio propaga-
tion and of the MAC protocol layer.

5. RF Channel Model

Speaking in general terms, the RF Channel model
describes the propagation of electromagnetic waves
(radio signals) in geographical space. Accurate
mathematical models for radio propagation can re-
sult in exaggeratedly heavy computations, which are,
furthermore, difficult to partition for parallel pro-
cessing. Rather than use classical approaches to RF
modeling, such as those described in [17,18], we have
devised a simplified model that is both novel and
computationally efficient.

Although more accurate, classical models for RF
propagation are not scalable. The large number of
nodes we desire to simulate in our sensor networks
lead us to construct a channel model that, retaining
only the characteristics most important to a packet
radio network, scales up as needed. Our model sub-
stitutes the mathematical detail of time and distance
dependent functions with stochastic equations that
make it computationally manageable, and yet, ex-
pressive.

Let us assume that our models work with a multi-

access radio channel such as that defined by the IEEE
802.11 standard. From a networking viewpoint, the
two most important characteristics of the channel are
the packet delay and the probability of packet loss
in transmission due to interference. As indicated in
Figure 4, these two characteristics are quite different
for unicast versus broadcast transmission.

These differences arise because of the details of the
802.11 behavior. Allowing us an abuse of termi-
nology, let us say that we can define channel busy-
ness as a quantity that reflects how busy it has been
within a recent interval of time.

A unicast transmission is destined for a single re-
ceiver and is sent repeatedly until the intended re-
ceiver has acknowledged the successful received of
the packet, or until some ceiling on transmission at-
tempts has been exceeded. The probability of loss
for unicast packets increases slowly and monotoni-
cally with the channel busy-ness in the vicinity of
the receiver, since the sender will retry the trans-
mission a number of times. Similarly, one can ex-
pect that channel delays will rise monotonically with
channel busy-ness. The delay, however, increases
quickly with the busy-ness because each such packet
will need ever more retransmissions as the channel
becomes busier.

Conversely, a broadcast transmission is sent out to
any radio receiver within range. Broadcast packets
are, generally, sent just once, though in some im-
plementations they may be sent multiple times to
increase the reliability with which they are received.

Due to factors beyond the scope of this paper, the
probability of loss for broadcast is much higher from
the start. This probability increases even further
with channel busy-ness until it becomes quite small
for a very busy channel. The delay, however, grows
slowly since each packet is transmitted only once, or
a few times, rather than repeatedly until an acknowl-
edgement is received.

Bearing in mind these basic characteristics, we have
implemented a novel channel model that emulates
the behavior of 802.11, and that is, furthermore,
highly parallelizable. Our RF channel model as-
sumes that every time a message is received, we
recompute certain quantities to determine whether
that message arrived successfully or not. To achieve
this goal, whenever the k-th message arrives at a net-
work node, we compute P,i"“, an estimate for the
probability of successful receipt.

Figure 5 illustrates this channel model. Here we see
that a receiver R is surrounded by a number of trans-
mitters a, b, ¢, d, and e. Every time a message is sent
toward R, either by unicast or broadcast, we first fig-
ure out whether transmitter is within distance p of
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R. If this distance is greater than p, as is the case
with transmitter b, the message is not delivered. This
cutoff parameter models limitations in signal prop-
agation that reflect reality. At the same time, the
cutoff allows the scalability of the channel model and
facilitates its parallelization.

For the k-th message that is sent to R, we define
0 as the time between the arrival of this message
and the arrival of the previous message, the (k — 1)-
th. When messages are sent from transmitter inside
the circle of radius p (such as a, ¢, d, and e, in Fig-
ure 5) with receiver R at the center, they are simply
discarded. Otherwise, if the transmitter is within a
distance p from the receiver, messages are delivered
or not according to a Bernoulli random variable with
parameter P,i"“. Although the complete derivation
of P,io“ lies outside the scope of this paper, we now
give the reader a brief sketch of how it can be ob-
tained.

Let us define the busy-ness of a channel in the vicin-
ity of a receiver as a measure of how utilized the ra-
dio spectrum currently is and has been in the recent
past. Formally, for a receiver R, we define busy-ness
at the arrival of its k-th message as:

By(dk) = 1+ e % By_1(8p—1).

This measure of busy-ness basically indicates the
number of “active” messages in the channel. It in-
creases by one due to the new message just sent
and retains a decaying memory of those previously
sent. If packet length is exponentially distributed
with mean %, the probability that messages sent 0

units of time ago are still in the channel is e~ 9.

From the channel busy-ness we can derive the offered
load at the time of each message’s receipt. Then,
knowing the general shape of the curve for through-
put versus offered load for the CSMA/CA protocol,
we can use offered load to compute P{°**, the prob-
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ability that packets are lost in this channel.

In the experiments we describe in the next section,
we model the channel’s packet loss probability by a
function that rises linearly from an initial value Py
up to a value Pg, representing a “saturation point”.
This point corresponds to the value of offered load
where throughput curves flatten out in response to
increases in offered load. After reaching saturation,
the loss probability increases in such a way as to
maintain constant throughput.

Note that this RF channel model is easily paralleliz-
able. Constraining the effects of interference to short
range interactions, allows us to use local rather than
using global states, what facilitates model partition-
ing.

6. Experiments

In order to verify the successful integration of
WiroKit and DaSSF, we have submitted our frame-
work to a simple, though fairly comprehensive model.
At this stage in our project, the main purpose of our
experiments was to serve as a proof of concept.

In the experiment, we adjust the parameters of our
radio model to simulate a reasonably realistic chan-
nel of 1 Mbps capacity. We assume that the ra-
dio channel will be saturated when the throughput
reaches 67%. We also assume that transmission de-
lays for a packet to be sent over the air is described
by linear function which starts at 0.2 millisecond and
then increases linearly with the offered load up until
roughly 1.0 millisecond, when the channel is about to
get saturated. The cut-off distance for direct radio
contact is 400 meters.

In the first experiment, we start out with a geograph-
ical region of 4x4 square kilometers. The region is
divided into 20x20 cells. Over this area, we deploy
400 sensors uniformly at random. A single data col-



lection point is placed on one corner of the square
and the initial chemical contaminant is placed at the
center of the region. The chemical plume spreads at
a speed of 10 m/s and we assume no wind is present.
The sensors are programmed to start at times which
are uniformly distributed between 0 and 10 seconds.
When no significant level of chemical is present in its
neighborhood, we say that the sensor is “inactive”.
In this state, the sensor takes a measurement and
sends a packet to the data collection point every 10
seconds. If, instead, the sensor detecting a chemical
level above a certain threshold, it becomes active and
sends out a data packet every second.

Figure 6 and 7 show the result of a simulation of 400
simulated seconds. The figures show the throughput
of the network, as well as the delays experienced by
the packets arrived at their destination with num-
bers that are collected every 10 simulated seconds
interval.

Figure 6 shows that the number of packets sent by
all sensors in the system increases quickly and then
levels off at 4,000 packets per 10 seconds. This is
due to the fact that as the chemical plume spreads
out, more sensors become active. This causes the
network load to increase as packets are sent more
frequently to the data collection point. At a time
around 250 seconds, all sensors become active and
the traffic stays constant as every sensor sends out
a packet per second. The number of received pack-
ets increases along with the number of sent packets,
but levels off at the maximum throughput of around
1,600 packets every 10 seconds. The capacity of the
entire network can, then, be calculated as approxi-
mately 72 Kbps.

Figure 7 shows that average packet delays increase
sharply in the beginning of the simulation, as net-
work traffic increases. This result confirms our in-
tentions of modeling a MAC layer which leads to
longer back-offs as the channel gets busier. Further
increases in network traffic only causes more packets
to be dropped and so the delay for packets that are
not discarded remains roughly constant. The hump
observed between 130 and 200 seconds is due to the
setup of the network routing table. The greedy al-
gorithm that constructs these tables initializes them
with the first viable route it finds. As time goes
on and better paths to the Monitor node are eventu-
ally discovered, this delay can potentially drop down,
since packets tend to take a smaller number of hops
from source to destination. After a while, however,
as routes stabilize, so does the packet delay, which
hovers around a constant value.

In our next experiment, we focus on a larger network.
In order to assess the scalability of our model, we
deploy 10,000 sensors over a region of 10x10 square
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kilometers. The region is subdivided into 100x100
cells. Again, the Monitor node is placed at the corner
of the square and the initial chemical contaminant
starts at the center of the field. In order to reduce the
simulation time and still observe the network traffic
change, we set the chemical plume spread speed to
be 100 meters per second. Every sensor starts at a
time chosen uniformly at random between 0 and 100
seconds. A packet is sent every 100 seconds when
the sensor is inactive. Otherwise, if the sensor is acti-
vated by higher concentration of chemical, a a packet
is sent every 20 seconds. The simulation executes for
1,000 simulated seconds, on a Sun Enterprise 6500
with 14 processors and 7 GB memory. This partic-
ular run uses 5 processors and takes over 10 hours
to complete, executing nearly five times faster when
compared to a single processor run.

From Figure 8, we see that the network capacity only
reaches about 80.6 Kbps, what corresponds to no
more than 12% of the radio channel capacity. This
can be explained by the setup of the network: with
a single data collection point, it was to be expected
that as the number of sensors increased, so would
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congestion and packet loss.

Another interesting point that can be observed in
these two experiments, regards the convergence time
for routing algorithms. As expected, the large net-
work takes five times as long as the small network to
start forwarding data packets to the Monitor node.
The order of magnitude of these times corresponds
to the ratio of the diameters of the two networks.

These experiments have confirmed the successful in-
tegration of DaSSF and WiroKit into a comprehen-
sive model for the simulation of wireless ad-hoc net-
works. The results indicated above show that the
expectations we had for a small and a large network
model were met in both cases. The model for our
large network, with 10,000 nodes, occupied approxi-
mately 460M bytes of memory leaving a lot of room
for possibly larger models.

7. Conclusions and Future Work

We have presented the architecture of a scalable
framework for the simulations of wireless ad-hoc net-

works. This project represents the coming together
of two major pieces of software. DaSSF, the high
performance, scalable simulator developed at Dart-
mouth College, served, mainly, as the structural glue
that allowed sub-models to inter-operate. It pro-
vided, not only the infrastructure for data exchange,
but more importantly, for the synchronization of
all components. WiroKit, the portable router from
BBN, was easily integrated with other sub-models
thanks to its few and well-defined points of contact.
It was created to be portable not only across different
wireless platforms, but also easily transportable into
simulation testbeds, allowing the direct execution of
routing algorithms at source code level.

The result of this project was more than the sum
of its parts. Through experiments with our Simula-
tor for Wireless Ad-hoc Networks (SWAN) we have
demonstrated its functionality and scalability. Using
the scenario of a natural catastrophe or terrorist at-
tack, where a plume of hazardous material is carried
over the landscape, we have shown that this frame-
work can be of great help to study the performance
of routing algorithms for networks of smart sensors.

Our experiments have exposed network properties,
namely throughput and packet delay as functions of
traffic and network configuration. These results of
these experiments have been paramount to validat-
ing the our model. We were able to observe conges-
tion through packet losses and packet delays, charac-
teristics that reflect the choices of routing algorithm
and network configuration.

Future directions for our work will follow two main
paths, in parallel. In the first one, we will refine
the sub-models in the framework and add compo-
nents for which, at this stage, we included only place-
holders. As next natural steps in this development,
we can cite the development of a model that im-
plements the IEEE 802.11 standard, and a bona-fide
model for RF propagation and interference. The sec-
ond main path in our future research will involve
the development, refinement and evaluation of dif-
ferent sensor network designs. We will be looking
into issues such as routing algorithm design, efficient
strategies for data pre-processing, collection, and ag-
gregation, as well as the real-time visualization of the
state of the process being monitored.
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